
CAP 5705 Computer Graphics

Dr. Corey Toler-Franklin

Program #2 Ray Tracing

DUE: October 2nd, 11:59 pm

Overview | Details | Resources | Getting Help | Submitting

Overview

The ray tracing algorithm generates photorealistic images from 3-D geometry in a scene. Ray

tracers simulate the behavior of light as photons travel from a light source, collide with and bounce

off of objects in the scene, and eventually reach the observer. This process can be computationally

intensive depending on the scene complexity and number of light sources.

You will implement a ray tracer that generates images of simple scenes composed of spheres and

triangles. Your work will be evaluated based on the following criteria (1) source code completion

and correctness 30% (2) ray intersection 20% (3) shading algorithms 20% (4) special effects 20%

(5) one page report 10%.

Details

Getting Started

You are free to alter the provided coding framework to accomplish your task. The framework is

simply a guide. Extract the file proj2_raytracer.zip to your local folder. The source code framework

is in the src folder. Datasets (meshes and textures) are found in the data folder. Other helpful

materials are in the docs folder. You may add folders and files to your project zip file but keep the

same directory structure for the framework you were given.

To build the proj2_raytracer application on linux, type make in the src/mainsrc folder. This also

generates a visual studio c++ solution file. Use any platform but make sure your code compiles again

using the make file on linux before you submit. If you need help selecting a debugging interface,

see the TA. Included in the package is libst, an open source openGL wrapper, and tinyojloader (by

Syoyo Fujita), an OBJ file object loader. The program is executed from the main function in the file

mainsrc/mainsrc_proj2.cpp. Examine the classes RayTracer, Ray, Intersection, Surface, Triangle,

Sphere and Shader. You will use function declarations and code comments as guides to complete

these classes which have been partially implemented for you. Search the project files for TO DO:

Proj2 raytracer. In the following sections, you will insert or alter code at these locations to

complete the assignment.

Figure 1: Defining a Ray

Intersections

Surfaces Complete functions that implement

ray surface intersections. You are given a base

class, Surface and sub-classes Sphere and Tri-

angle. Implement the intersection functions in

the Sphere and Triangle sub-classes. The input

is a ray and the outputs are the intersection in-

formation and a true flag (if found) or a false

flag (not found).

1

As discussed in class, your implementation should cast a ray (Figure 1) from the eye (camera)

position and test for intersections along the ray (at time intervals t) with surfaces. The direction

of this path is the reverse of what happens in reality. This approach makes the problem tractable

by insuring that only photons that actually reach the observer are considered. The intersection

function returns true if an intersection is found; otherwise false. Update the Intersection class with

information about the computed intersection.

Figure 2: Ray to Surface Intersections

Scenes Next, complete code that computes

ray to surface intersections for every object in

the scene. The code will visit each surface in

the scene and call the Surface intersection func-

tion on each Surface. Only store the closest

intersection points (Remember our discussion

about shadowing and occlusion). Figure 2 il-

lustrates the ray path and intersection.

Shading Now implement the Lambertian func-

tion in the Shader class. The Lambertian Re-

flectance Model, covered in class, describes the

relationship between the observed intensity values in an image and the normals (surface orientation

information) of the objects in the scene. Figure 3 illustrates that this relationship is proportional to

cos(θ) where θ is the angle between the incident light direction l and the surface normal n̂. The

model assumes a perfectly diffuse surface. Once you have implemented the Lambertian function,

implement the Phong function. Refer to the textbook and lecture slides for the formulation.

Figure 3: Lambertian Reflectance Model

Ray Trace You now have code for a very basic

ray tracer. Use it to implement the ray tracing

algorithm in the Run function of the Ray Tracer

class. The three stages are: (1) cast a ray from

the camera into the scene, (2) compute inter-

sections with surfaces, (3) shade objects in the

view and store the results in an image. You will

be able to add more complex functionality later

after we cover advanced topics.

Special Effects

Word has gotten around that you are a computer

graphics wiz. You have been hired by BlueSky

Studios to create a special effect for a new com-

mercial. Add additional appearance properties to your Surfaces to render a special effect of your

choosing. Consider adding Fresnel shading, mirror reflection or transparency. Use the textbook and

lectures for ideas. Your Intersection class contains a pointer to the Surface found at the point of the

intersection for access to surface properties in the Shader class.

Report Write a one page document that includes the following:

• Three ray traced results: Lambertian Shading, Phong Shading and a Special Effect

• Describe your approach for creating the special effect.

• List any difficulties you had with the assignment.

2

• Add any special instructions I need to run your code.

• Explain any challenges (e.g. Why your code does not run. Bugs?)

Resources

The openGL Programming Guide, available online https://www.opengl.org/sdk/ is a good reference.

Appendix A also provides information about GLUT and GLEW. Chapter 12 of the textbook, Fun-

damentals in Computer Graphics, covers meshes. Information about the .obj file format is in the

docs folder.

If you are not in the CISE department, and would like computer lab access, you can register for a

CISE account at https://www.cise.ufl.edu/help/account. The source packet proj1_mesh.zip will run

on machines in the computer labs on the first floor of the CSE building. Labs are open 24 hours

(see https://www.cise.ufl.edu/help/access). Remember to back-up your work regularly!!! Use

version control to store your work. DO NOT PUBLISIZE SOLUTIONS.

Getting Help

Source Code Please do not re-invent the wheel. Use the source code framework (and comments)

and review the notes in the docs folder.

Discussion Group Post questions to Canvas (everyone benefits in this case), or send me an email

at ctoler@cise.ufl.edu. I will check both daily.

Office Hours Stop by my office, CSE 332 (or lab CSE 319) during office hours MWF 10:40 to

11:30am or see the TA in room 339 TH 3:00 to 5:00pm.

Collaborating Work independently. Remember to always credit outside sources you use in your

code. University policies on academic integrity must be followed.

Submitting

Upload your proj1_mesh.zip fie to Canvas. It should include:

• Source code.

• Make file.

• One page report.

• Three ray traced images: Lambertian Shading, Phong Shading, Special Effect.

c©Corey Toler-Franklin2015

3

